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Abstract.
Background: Alzheimer’s disease is characterized by the accumulation of amyloid-� (A�) into plaques, aggregation of tau
into neurofibrillary tangles, and neurodegenerative processes including atrophy. However, there is a poorly understood spatial
discordance between initial A� deposition and local neurodegeneration.
Objective: Here, we test the hypothesis that the cingulum bundle links A� deposition in the cingulate cortex to medial
temporal lobe (MTL) atrophy.
Methods: 21 participants with mild cognitive impairment (MCI) from the UMC Utrecht memory clinic (UMCU, discovery
sample) and 37 participants with MCI from Alzheimer’s Disease Neuroimaging Initiative (ADNI, replication sample) with
available A�-PET scan, T1-weighted and diffusion-weighted MRI were included. A� load of the cingulate cortex was
measured by the standardized uptake value ratio (SUVR), white matter integrity of the cingulum bundle was assessed by
mean diffusivity and atrophy of the MTL by normalized MTL volume. Relationships were tested with linear mixed models,
to accommodate multiple measures for each participant.
Results: We found at most a weak association between cingulate A� and MTL volume (added R2 <0.06), primarily for the
posterior hippocampus. In neither sample, white matter integrity of the cingulum bundle was associated with cingulate A� or
MTL volume (added R2 <0.01). Various sensitivity analyses (A�-positive individuals only, posterior cingulate SUVR, MTL
sub region volume) provided similar results.
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Conclusion: These findings, consistent in two independent cohorts, do not support our hypothesis that loss of white matter
integrity of the cingulum is a connecting factor between cingulate gyrus A� deposition and MTL atrophy.

Keywords: Alzheimer’s disease, amyloid-�, diffusion tensor imaging, medial temporal lobe, neurodegeneration, PET, white
matter integrity

INTRODUCTION

Alzheimer’s disease (AD) is characterized by
the accumulation of amyloid-� (A�) into plaques,
aggregation of tau into neurofibrillary tangles, and
neurodegenerative processes like atrophy [1]. How-
ever, there is a notable spatial discordance between
typical initial locations of A� deposition and neu-
rodegenerative processes. Whereas A� deposition
typically starts in the precuneus, medial orbitofrontal
cortex, and the cingulate cortex [2, 3], the aggrega-
tion of tau and atrophy mostly starts in the medial
temporal lobe (MTL) [4–6]. Additionally, while A�
plaques are known to gradually spread throughout
the brain, A�-PET studies have found relatively little
involvement of A� in the MTL compared to neocor-
tical regions [7–9]. This spatial discordance between
A� deposition and neurodegeneration in the MTL in
AD is poorly understood [10]. In addition, there is
a largely unexplained temporal discordance, as A�
deposition precedes neurodegenerative processes by
a decade [11, 12].

A hypothesis in the AD field is that A�
deposition and distant neurodegeneration might be
interconnected through the functional and structural
architecture of the brain [13]. If these two processes
are indeed connected via the structural connections of
the brain, i.e., the white matter tracts, the cingulum
bundle is of particular interest, because it connects
the typical starting locations of A� deposition (i.e.,
the cingulate cortex) with that of neurodegenerative
processes (the MTL, see Fig. 1). The proposed role
of the cingulum bundle could be two-fold. First, the
cingulum might serve as a conduit for pathology or
signals, linking A� deposition in the cingulate cortex
to spread of tau and neurodegeneration from the MTL
to the neocortex. Second, the tracts of the cingulum
bundle might degenerate because of A� deposition
on one end of the bundle, which might increase vul-
nerability of the MTL on the other end of the bundle
and thereby promote local tau aggregation [14–17].
The integrity of the white matter in the cingulum bun-
dle has been shown to be affected in AD [18] and has

been implicated in A�-facilitated tau spread from the
MTL to the posterior cingulate cortex [19].

In the current study, we explore the hypothesis that
the cingulum bundle links A� deposition in the cin-
gulate cortex to neurodegeneration in the MTL. We
tested this hypothesis in early symptomatic disease
stages, i.e., patients with mild cognitive impairment
(MCI), by assessing whether the relationship between
white matter integrity of the cingulum bundle and
pathology at either end of the bundle (i.e., A� in the
cingulate cortex and atrophy in the MTL) is stronger
than the relationship between the two pathologies
itself.

METHODS

Participants

UMCU
21 participants from the ABIDE study [20],

recruited at the memory clinic of the UMC Utrecht
(UMCU), were included. All participants underwent
a one-day memory clinic evaluation including a
physical examination, an interview, brain MRI and
neuropsychological assessment. For the present study
we selected participants with a diagnosis of MCI,
available A� [18F]-florbetaben PET scan, diffusion
MRI scan, and 3D-T1-weighted MRI scan. Clini-
cal diagnosis was established at a multidisciplinary
consensus meeting after the one-day memory clinic
evaluation. MCI was defined as complaints or deteri-
oration from prior functioning and objective evidence
of impairment in at least one cognitive domain. Fur-
thermore, daily living activities had to be normal or
mildly impaired [21, 22].

ADNI
As a replication sample, we included 37 partic-

ipants from the multicentric Alzheimer’s Disease
Neuroimaging Initiative (ADNI, phase 3, down-
loaded August 2019 at https://adni.loni.usc.edu). We
selected participants with a diagnosis of MCI who
had an available A� [18F]-florbetapir PET, available

https://adni.loni.usc.edu
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Fig. 1. Spatial overview of ROIs. A spatial overview of the cingulate gyrus (in red), the cingulum bundle (in blue) and the medial temporal
lobe (in green) in anterior, ventral, and sagittal view.

diffusion MRI scan and available T1-weighted MRI
(flowchart of the selection of participants can be
found in Supplementary Figure 1). The MRI and
PET scan had to be acquired with a maximum of
1 year apart. As diffusion measures are impacted by
factors related to scanner and acquisition protocols
[23–25], we selected participants from any center in
which MRI was obtained on a Siemens scanner with
a harmonized diffusion protocol. MCI diagnosis was
based on the visit closest to the MRI scan. ADNI
criteria for the diagnosis of MCI can be found on
the website (https://adni.loni.usc.edu) and have been
previously reported [26].

Neuroimaging

Amyloid PET
For the UMCU sample, Amyloid PET scans were

made on a Siemens Biograph 40 MCT. Participants
were injected with a tracer dose of approximately
300 MBq ± 20% [18F]-florbetaben (NeuraceqTM).
The image acquisition window extended from 90
to 110 min (4 × 5-min frames) after dose injection.
Detailed information on acquisition and processing
can be found in the Supplementary Methods. To
obtain A� load for each participant, we first calcu-
lated the global cortical standardized uptake value
ratio (SUVR) based on the volumes and the standard-
ized uptake value (SUV) of all cortical ROIs with
cerebellar gray matter as the reference tissue. For
the primary analyses we used a composite score of
the cingulate cortex (Cingulate SUVR) based on the

Hammers atlas [27]. This composite consisted of the
SUVR of the anterior cingulate and the posterior cin-
gulate. In a sensitivity analysis, we’ve also assessed
the SUVR of only the posterior cingulate.

For the ADNI sample, participants were injected
with 370 MBq ± 10% [18F]Florbetapir. Images were
acquired 50 to 70 min (4 × 5-min frames) after dose
injection. Further details on acquisition and process-
ing of [18F]-Florbetapir PET have been described
elsewhere and can be found on the website [28]
(https://adni.loni.usc.edu). As a global measure of
A� load, we used the neocortical composite SUVR
that comprises an average of frontal, cingulate,
lateral-parietal, and lateral temporal gray matter
regions-of-interest, using whole cerebellum as the
reference region. For the primary analyses, we used
the composite score of the cingulate regions (Cingu-
late SUVR) based on the Desikan-Killiany atlas [29]
which consisted of the caudal anterior cingulate, isth-
mus cingulate, posterior cingulate and rostral anterior
cingulate.

MRI acquisition
For the UMCU sample, brain MRI data was

acquired using a Philips 3 T scanner (Achieva,
Philips, Best, the Netherlands) with a stan-
dardized MRI protocol that included a 3D-T1
weighted sequence (192 continuous slices, voxel size:
1 × 1 × 1 mm3, repetition time (TR)/echo time (TE):
7.9/4.5 ms, flip angle of 8◦) and a diffusion-weighted
sequence (single-shot echo EPI, 48 contiguous
slices, voxel size 1.72 × 1.72 × 2.50 mm3, TR/TE

https://adni.loni.usc.edu
https://adni.loni.usc.edu
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6600/73 ms, 45 gradient directions with a b-value
of 1200 s/mm2 and one with a b-value of 0 s/mm2

(number of signal averages = 3)).
For the ADNI sample, brain MRI data for partic-

ipants included in this study was acquired using a
Siemens 3 T scanner (Siemens Healthineers, Erlan-
gen, Germany). The standardized MRI protocol
included an MPRAGE (170 sagittal slices, voxel
size of 1 × 1 × 1 mm3, TR/TE/Inversion time (TI):
2.98/2300/900 ms, flip angle of 9◦) and a diffusion-
weighted sequence (voxel size 2 × 2 × 2 m3, TR/TE:
7200/56, 41 gradient directions with a b-value of
1000 s/mm2 and five with a b-value of 0 s/mm2).

Diffusion preprocessing and tractography
For both the UMCU and ADNI study samples,

the diffusion-weighted data was processed with
ExploreDTI (version 4.8.6; https://www.exploredti.
com/) [30] running on MATLAB R2018a (MATLAB
and Statistics Toolbox Release 2014b, The Math-
Works, Inc., Natick, Massachusetts, United States).
Preprocessing of the data included correction for
subject motion, eddy current and susceptibility arte-
facts, including rotation of the B-matrix prior to
the estimation of the diffusion tensor [30–32]. The
diffusion tensors were computed using robust esti-
mators [31] followed by whole-brain tractography.
Fiber tracts were reconstructed by starting seed points
uniformly throughout the data at 2 mm isotropic res-
olution with a step size of 1 mm. Each streamline
was propagated using integration over fiber ori-
entation distributions. Streamlines were guided by
fiber orientations inferred using constrained spherical
deconvolution with a maximum harmonic order (l-
max) of 6. This method allows for the reconstruction
of more complex pathways, such as crossing fibers
[33]. Streamlines were terminated when they entered
a voxel with fiber orientation distributions <0.1 or
when the deflection angle between two successive
steps was >45◦.

Following preprocessing and tractography, we
manually reconstructed the superior part and the
parahippocampal part of the cingulum bundle per
hemisphere in each participant. For the reconstruc-
tion of the tracts we used an earlier described multiple
region of interest (ROI) approach [34, 35]. In short,
ROIs for tract selection and tract exclusion were man-
ually drawn on color coded fiber orientation maps in
native space. ROI placement was based on previously
defined anatomical landmarks to reduce subjectivity
in fiber tracking [36]. Low inter- and intra-rater vari-
ability with this method has been demonstrated in

previous studies [37, 38]. For the reconstructed cingu-
lum bundles, mean diffusivity (MD) was determined
for the primary analysis. As a sensitivity analysis, we
also performed an along tract analysis. Along tract
analysis allows to assess multiple data points through-
out the bundle rather than only the mean of the entire
bundle, giving a higher sensitivity to subtle changes
[39]. Along with the tract analysis, we assessed 8 dif-
ferent data points along the reconstructed cingulum
bundles (4 for the superior part and 4 for the parahip-
pocampal part) and determined MD for each of these
data points per hemisphere, per subject.

Medial temporal lobe volume
MTL volume was determined for each participant

by using the Automatic Segmentation of Hip-
pocampal Subfields (ASHS) software package. More
specifically we used the atlas for the T1-weighted
MRI [40, 41]. ASHS automatically segments anterior
and posterior hippocampus as well as MTL cortical
sub regions for both hemispheres. All segmentation
results were visually inspected, manual edits were not
needed. Following visual inspection, we combined
the volumes of the anterior hippocampus, posterior
hippocampus, entorhinal cortex, Brodmann area 35
and 36 (perirhinal cortex) and the parahippocam-
pal cortex to obtain MTL volume. MTL volume
was normalized by the intracranial volume for each
participant. For the UMCU sample intracranial vol-
ume was obtained by probabilistic segmentations
using MeVisLab (MeVis Medical Solutions AG,
Bremen, Germany). For the ADNI sample, intracra-
nial volume was obtained by segmentations using
the Computational Anatomical Toolbox (CAT) 12
toolbox (version R1073, C. Gaser, Structural Brain
Mapping Group, Jena University Hospital, Jena, Ger-
many) for SPM version 12.

Statistical analysis

All statistical analyses were performed in R (ver-
sion 3.5.1) [42] and statistical significance level was
set at � = 0.05. All associations were tested with lin-
ear mixed models. Linear mixed models were used
(using the “lme4” package; [43]) because they allow
for both within- and between-subject factors, thus
accommodating the four measurements of the cin-
gulum bundle for each subject (left superior, right
superior, left parahippocampal and right parahip-
pocampal), two measurements for both cingulate
SUVR and MTL (left and right), as well as consid-
ering between-subjects factors such as age and sex.

https://www.exploredti.com/
https://www.exploredti.com/
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Table 1
Participant characteristics

UMCU (n = 21) ADNI (n = 37)

Age, y 75.9 ± 6.5 75.6 ± 7.9
Female sex 8 (38) 15 (41)
MMSE 26 [3.5] (21–29) 27 [2] (23–30)
A�-positive 14 (67) 22 (59)
[18F]-florbetaben global SUVR 1.49 [0.3] (1.17–2.34) NA
[18F]-florbetaben cingulate SUVR 1.68 [0.45] (1.26–2.47) NA
[18F]-florbetapir global SUVR NA 1.29 [0.57] (0.86–2.28)
[18F]-florbetapir cingulate SUVR NA 1.35 [0.54] (0,92–2,31)
ICV in ml 1445 [191] (1101–1645) 1482 [217] (1067–1774)
TBV, % of ICV 68.7 [4, 9] (62.5–73.3) 72.1 (6.7) (63.5–82.7)
MTL volume, % of ICV 0.89 [0.13] (0.75–1.11) 0.96 [0.17] (0.66–1.22)
MD Superior Cingulum bundle 10–4 mm2/s 7.61 [0.41] (7.22–9.07) 7.77 [0.31] (7.2–9.1)
MD Hippocampal Cingulum bundle 10–4 mm2/s 10.1 [1.77] (7.9–12.6) 9.34 [1.38] (7.7–11.9)
18F, fluorine-18; A�, amyloid-�; ICV, intracranial volume; MD, mean diffusivity; mm, millimeter; MMSE,
Mini-Mental State Exam; MTL, medial temporal lobe; NA, not applicable; SUVR, standardized uptake value
ratio; TBV, total brain volume. Data is presented as mean ± standard deviation, n (%) and median [interquartile
range] (min – max).

The association between Cingulate SUVR and MTL
volume was tested with a model that included Cin-
gulate SUVR, hemisphere (left/right), age, and sex.
The relationship between Cingulate SUVR and Cin-
gulum MD was tested with a model that included MD
of the cingulum, location (superior or parahippocam-
pal), hemisphere, age, and sex. For the association
between MTL volume and cingulum MD we included
MD of the cingulum, location, hemisphere, age, and
sex. For these main analyses, we report the standard-
ized fixed effect (B), the 95% confidence interval, the
p-value, and explained variance (R2-) of the model
without and with the variable of interest.

We performed the following post-hoc sensitiv-
ity analyses (also with linear mixed models). First,
all analyses were repeated in A�-positive individu-
als only, to rule out that findings were confounded
by patients without AD pathology. For A� load we
repeated the analysis with posterior cingulate cortex
SUVR only, as this region is part of the posterior
MTL network and might be more sensitive. For the
integrity of the cingulum bundle we also ran a more
fine-grained along tract analysis. For MTL volume,
we zoomed in on specific sub regions of the structure
as these might be more sensitive than the complete
volume. We assessed 1) posterior hippocampus vol-
ume, as this is spatially close to the cingulate cortex;
2) entorhinal cortex volume as the cingulum bundle
projects mostly on this structure; and 3) parahip-
pocampal cortex as this region is part of the posterior
MTL network, together with the posterior cingulate.
All sensitivity analyses were done in a similar way
as described in the preceding paragraph. All tests

were performed separately for the UMCU and ADNI
sample.

RESULTS

Table 1 shows the characteristics of the participants
of both the UMCU and the ADNI sample.

Cingulate SUVR: MTL volume

No association was found between Cingulate
SUVR and MTL volume in both the UMCU sam-
ple (B(CI): –0.27 (–0.63 – 0.09), p = 0.197, R2 in
model without and with SUVR 0.30 and 0.35, respec-
tively) and the ADNI sample (B(CI) = –0.03 (–0.34 –
–0.29), p = 0.88, R2 in model without and with SUVR
was 0.013 and 0.014, respectively), see Table 2 and
Fig. 2A and 2B.

In a sensitivity analysis that assessed posterior
hippocampus volume, an association was found for
the ADNI sample (B(CI) = –0.38 (–0.67 – –0.08),
Bonferonni corrected p = 0.045), but not the UMCU
sample (Supplementary Table 6). All other sensitivity
analyses (in A�-positive individuals, using poste-
rior cingulate SUVR and using entorhinal cortex and
parahippocampal volume) yielded results similar to
the main analysis (Supplementary Tables 4–6).

Associations with cingulum MD

The findings in Table 2 and Fig. 2C and 2D indi-
cate that there was no association between Cingulate
SUVR and Cingulum MD for either the UMCU
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Table 2
Main linear mixed model results

UMCU ADNI
� (CI) F (df) p � (CI) F (df) p

Cing. SUVR – MTL vol. –0.27 (–0.63 – 0.09) 1.84 (1, 13.4) 0.2 –0.03 (–0.34 – 0.29) 0.02 (1, 36.8) 0.88
MD – Cing. SUVR 0.01 (–0.06 – 0.07) 0.03 (1, 48.2) 0.86 –0.01 (–0.03 – 0.01) 1.33 (1, 108.2) 0.25
MD – MTL volume 0.06 (–0.16 – 0.28) 0.24 (1, 44.4) 0.62 – 0.01 (–0.10 – 0.08) 0.06 (1, 111.3) 0.80

Shows the main results for the linear mixed models. Top row shows the results for the relationship between cingulate A� and MTL volume,
middle row the results for cingulum MD and cingulate A� and the bottom row shows the results of the relationship between cingulum MD
and MTL volume. Results are displayed as follows: the standardized fixed effects coefficients (�) plus 95% confidence intervals, the F-tests
with the degrees of freedom (df) and the p-value for both the UMCU and ADNI study samples.

Fig. 2. Scatterplots of regression analyses. Scatterplots showing the association for UMCU (left) and ADNI (right) between Cingulate SUVR
and MTL volume (A and B), for the association between Cingulum MD and Cingulate SUVR (C and D) as well as for the association between
Cingulum MD and MTL volume. The legends on the outer right side of the figure refer to both panels.

(B(CI) = 0.006 (–0.06 – 0.07), p = 0.86, R2 for model
without or with SUVR was 0.0231 and 0.0232,
respectively) or the ADNI sample (B(CI) = 0.013
(–0.03 – 0.01), p = 0.25, R2 for model without or
with SUVR was 0.017 and 0.017, respectively).
There were no significant associations for any of
the covariates: age, sex, hemisphere, and location

(Supplementary Table 2). We performed sensitiv-
ity analyses in which we assessed the relationship
between Cingulate SUVR and Cingulum MD in A�-
positive individuals and in which we used posterior
cingulate SUVR rather than Cingulate SUVR but
both yielded no difference in results (Supplementary
Tables 4 and 5).
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There was no relationship between MTL volume
and cingulum MD in either the UMCU (B(CI) = 0.06
(–0.16 – 0.28), p = 0.62, R2 for model without and
with MTL volume was 0.29 and 0.29, respectively)
or the ADNI sample (B(CI) = –0.01(–0.10 – 0.08),
p = 0.80, R2 for model without and with MTL volume
was 0.0077 and 0.0078, respectively), see Table 2
and Fig. 2E and 2F. There was no effect from the
covariates (Supplementary Table 3). The sensitiv-
ity analysis in A�-positive individuals gave similar
results (Supplementary Table 4). When we tested the
association using volumes of the sub regions of the
MTL rather than the complete MTL, results remained
non-significant (Supplementary Table 6).

As a sensitivity analysis on the white matter
integrity of the cingulum, we performed a more fine-
grained along-tracts analysis of 8 data points of the
MD of the cingulum bundle. This analysis did not
change the interpretation of the results (data not
shown).

DISCUSSION

We found at most a weak association between
Cingulate A� and MTL volume, primarily for the
posterior hippocampus, in line with earlier findings
[36, 37]. In neither sample, white matter integrity
of the cingulum bundle was associated with Cingu-
late A� on one end of the bundle or MTL volume at
the other end. These consistent findings in two inde-
pendent cohorts of patients with MCI do not support
our hypothesis that loss of integrity of the cingulum
bundle links A� deposition in the cingulate cortex to
neurodegeneration of structures in the MTL.

A� deposition, tau aggregation and neurodegen-
eration are all characteristic features of AD, but A�
deposition has a striking spatiotemporal discordance
with tau and neurodegeneration [17, 44]. The tempo-
ral discordance has been attributed to the sequence
in which pathological processes take place. A� accu-
mulates first while neurodegeneration starts about a
decade later [11, 45]. By the time that neurodegenera-
tion starts, A� deposition is believed to have reached
a plateau level [44, 46], which in part explains the
weak correlation between levels of biomarkers for
these processes, as we also see in the current study.
Here we focused on the discordant starting locations
of A� deposition compared to tau and neurodegen-
erative processes and zoomed in on loss of white
matter integrity of the cingulum bundle as a connect-
ing factor. The cingulum bundle was primarily chosen

because of its anatomical location, directly linking
the cingulate gyrus and the MTL, but the bundle is
also known to be affected in AD [18]. Microstruc-
tural changes in the cingulum bundle, specifically in
the parahippocampal cingulum, are well established
in MCI and AD [18, 47, 48]. Mito et al. [48] showed
that the posterior cingulum bundle was 1 of 2 bun-
dles affected in patients with MCI when compared to
healthy controls. The integrity of the cingulum bun-
dle has also been shown to predict tau deposition in
the posterior cingulate cortex in A� positive individ-
uals from the MTL to the posterior cingulate cortex
[19].

This study did not find that A� deposition was
linked to atrophy in the MTL via loss of integrity
of the cingulum bundle. For the primary analysis we
deliberately looked at the cingulate cortex and the
complete MTL. It could, however, be argued that
looking at these ROIs in closer detail would reveal
more subtle relationships. Nevertheless, the post hoc
sensitivity analyses that we performed did not show
such an effect, with the exception of the associa-
tion between cingulate A� and posterior hippocampal
volume. Our findings do not preclude involvement of
white matter tracts in the dissemination of AD dis-
ease processes across the brain. A� in the neocortex
might facilitate tau spread via the white matter tracts,
without the tracts itself being damaged in that pro-
cess [16]. A hint towards such a mechanism can be
found in functional connectivity studies. It has been
established in multiple studies that the default mode
network, which shows reduced connectivity in AD,
shows a large overlap with A� deposition patterns
[49, 50]. Furthermore, network analysis has shown
that the level of connectivity to an initially affected
area is a more important factor for vulnerability to
A� deposition than proximity to such an affected area
[51–53].

The main strength of our study is that we per-
formed a hypothesis-driven study in two independent
cohorts of patients with MCI with high quality MRI
and PET data. We used a state-of-the-art diffusion
imaging analysis pipeline which included modern
preprocessing techniques. One important aspect of
diffusion MRI is that it is susceptible for scanner
influences. For ADNI, a multicenter study, we tried to
limit scanner influences on the diffusion measures by
only selecting MRIs obtained on a Siemens scanner
with a harmonized protocol. However, they were still
obtained on different (types of) scanners which might
have influenced our diffusion measures. Furthermore,
the voxels of the UMCU diffusion scan were slightly
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anisotropic, which might have negatively influenced
tractography results. However, we found very simi-
lar results in the ADNI cohort for which the diffusion
scan was isotropic.

Another limitation is that our study design did
not include controls, meaning that we could not
establish if the white matter integrity of the cin-
gulum was indeed affected in patients, as would
be expected based on the literature [48, 54]. How-
ever, when we compared whole white matter MD of
the MCI patients from the UMCU to the MD of a
healthy control group (n = 47) from one of our previ-
ous studies [55], MD was, as expected, significantly
increased in the patient group (mean ± sd (×10–4)
patients: 8.21 ± 0.53; mean ± sd (×10–4) controls:
7.81 ± 0.31). Furthermore, we assessed an MCI pop-
ulation and the lack of associations of both MTL
atrophy and white matter integrity with A� depo-
sition might be because of a plateau effect of this
latter biomarker. However, the association between
A� markers and atrophy is known to be inconsis-
tent, also in early stages of the disease [56, 57] as
is the association of A� markers with white mat-
ter integrity [58–60]. Another limitation is that we
could only assess A�-PET as AD biomarker. Tau,
especially in the entorhinal cortex, might have been
valuable but this was not available for the UMCU
sample. Lastly, in both cohorts sample sizes were
modest, which affects statistical power. However, the
results were very consistent across cohorts and point
estimates for the tested associations were close to
zero, indicating that the null finding is unlikely to be
due to low power alone. Furthermore, future stud-
ies could use Bayesian models to exclude even small
effects.

In conclusion, our results do not support the
hypothesis that loss of integrity of the white matter
is a connecting factor between A� deposition in the
cingulate gyrus and local neurodegeneration in the
MTL. The hypothesis on involvement of the white
matter tracts in the dissemination of AD disease pro-
cesses should be further explored in future studies
with a larger group of A�-positive individuals.
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